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Abstract

Since experimental methods for measuring multicomponent adsorption isotherms are extremely tedious, numerical
approaches are an attractive alternative. Here, the variance in isotherm parameters as a function of experimental error in
measured effluent concentrations is quantified. The number of experimental replicates needed to obtain isotherm parameters
to a desired level of accuracy is calculated explicitly. After the covariance matrix of the parameters has been determined,
Monte Carlo methods are found to be rapid and effective. The use of different kinds of experiments, the effect of resolution
and loading, and the impact of the number of measured data points are described.  2001 Published by Elsevier Science
B.V.
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1. Introduction to optimize a separation, principally because they
require tedious and time-consuming experiments.

Preparative chromatography is widely used in the Recently, the problem of estimating multicomponent
isolation and purification of a variety of compounds isotherms numerically (preferably using a small
from a range of feedstocks [1,2]. It has become clear amount of easily obtained experimental data) is
that preparative chromatography is usually optimal receiving considerable attention in the literature [3–
with respect to production rate when the feed mass is 9]. The goal of this paper is to investigate the effect
high enough to cause nonlinear adsorption [2]. Thus, of experimental error on the precision of the numeri-
accurate knowledge of adsorption isotherms is an cally estimated isotherm parameters. To the best of
important prerequisite to optimization; clearly, these our knowledge, this important problem of estimating
should be multicomponent isotherms, measured over the numerical back-propagation of error has not been
the entire range of feeds and additive compositions addressed in the literature.
that will be used in practical runs. In practice,
however, multicomponent isotherms are rarely used 2. Theory
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therms, the most popular technique is probably perimental’’ profile, and found more accurate than
elution on a characteristic point (ECP), since a single ECP. Another optimization approach, the steepest
isocratic run gives many data points towards the descent algorithm, has been applied by James et al.
isotherm. However, ECP has the drawback of not [4] for determination of single- or binary-competitive
accounting for the contribution of nonequilibrium isotherms. For the two binary systems studied (keto-
effects (pore diffusion, film mass-transfer) to the profen enantiomers in one case and benzyl alcohol
trailing edge of the chromatogram. The ensuing error and 2-phenylethanol in the other), numerically iden-
in the extracted isotherm parameters has been char- tified model parameters were in good agreement with
acterized in the literature [9–15]. ECP cannot be those obtained from the ECP or FA methods. The
used to measure multicomponent isotherms. authors suggested that one drawback of their method

There are few experimental methods to measure was that the computation was long and complex.
multicomponent isotherms. Frontal analysis (FA) has Choosing an isotherm model appropriate to a
been widely used to determine isotherms for binary given experimental dataset is an important part of
systems [16–20], and recently this method has been numerical estimation, and has been studied by Guio-
applied to ternary systems [21,22]. Another ex- chon’s group. Experimental data on the competitive
perimental method that can measure multicomponent adsorption of 2-phenylethanol and 3-phenylpropanol
adsorption is elution on a plateau. One approach in reversed-phase chromatography were fitted to a
involves radio-labeling [23,24], which is tedious and large number of different isotherm models [18,33–
inconvenient. The simpler approach to elution on a 35]. Results from this particular case show that
plateau, which is called the concentration pulse or choosing model is a very complex and difficult task.
the step-and-pulse method, is to use unlabeled Some of the models are implicit, which increases the
pulses. This is easier to run, and has been more run time dramatically. For this data set, the implicit
widely used in liquid–solid adsorption [25–27]. models do not fit the data better than the explicit
There are also methods based on theoretical calcula- models, and are therefore unattractive. Among the
tions, such as the hodograph method [28–30]. Jacob- explicit models, the 11-parameter quadratic model
son et al. [16] proposed a method based on the provides the most accurate fit to the binary data.
h-transform of Helfferich and Klein [31] that mea- Because no relation between the number of parame-
sures binary isotherms for approximately Lang- ters in a model and the accuracy of that model can be
muirian behavior; results from this method agreed derived from the results, simple models with fewer
with those from the classical frontal method for their parameters would be preferable for the calculation of
system. Jacobson and Frenz [32] also combined band profiles in practice.
these two approaches to formulate a hybrid mass Since mobile phase modulators (e.g., organic
balance method. modifiers in reversed-phase and salts in hydrophobic

The alternative approach to determine the isotherm and electrostatic interaction chromatography) are
is to approximate it numerically. One disadvantage widely used in practice, it is important to know how
of this approach is that the isotherm functional form they affect adsorption isotherms. Jandera and co-
must be chosen at the outset. Then, by minimizing workers [36,37] investigated the effect of methanol
the difference between calculated and experimental concentration on single- and two-component solute
profiles, the parameter values are adjusted until a isotherms in reversed-phase chromatography. Lang-
best fit to the experimental data is found. In practice, muir, Jovanovic, competitive Langmuir, competitive
several isotherm forms should be tried in order to Jovanovic and quadratic isotherms were used to fit
estimate the most suitable model. the experimental data. A quadratic dependence of the

Dose et al. [3] applied the simplex optimization logarithm of the isotherm parameters on modulator
algorithm to determine single-component and binary (methanol) concentration was found to apply for the
isotherms numerically. Langmuir and bi-Langmuir Langmuir isotherms in the range 0–40% methanol.
model parameters were identified successfully. This By contrast, in the Jovanovic forms, the parameters
method was also used by Guan et al. [9] to determine themselves (and not their logarithms) were described
single-component isotherm using a simulated ‘‘ex- well by a quadratic expression in the modulator



934 (2001) 13–29 15L. Zhang et al. / J. Chromatogr. A

level. Jandera and co-workers [38,39] also investi- concentration [41,42]. Further, once competitive
gated the mobile phase effects in normal-phase binding supervenes, the resulting mass balances
chromatography. Here, the competitive Langmuir become nonlinear, making the decoupling between
model failed to describe the data and it was found the thermodynamic isotherm parameters and the
necessary to take into account the simultaneous kinetic rate parameters problematic. This nonlineari-
effects of a competitive adsorption and of a possible ty also implies that not all lumped models are
multi-layer association of the already adsorbed mole- equivalent, leading to the question of which kind of
cules. lumped model is the best. In the worst case, all rate

Antos et al. implemented the Marquardt algorithm and equilibrium parameters may need to be de-
for optimization to determine numerically the com- termined simultaneously. Since we hope to use
petitive isotherms of diolone acetate and ben- simple isocratic elution runs as the source of in-
zophenone from a real post-reaction mixture at one formation for estimation, we must immediately be
mobile phase composition in a reversed-phase sys- concerned with identifiability: can so many parame-
tem [5]. With a quadratic dependence of the ters in fact be uniquely and accurately extracted from
logarithm of the isotherm parameters on modulator a few simple runs? All these questions are beginning
concentration, they were able to predict the sepa- to be attacked in the literature as discussed earlier. In
ration for several different mobile phase composi- addition, such problems can be ‘‘ill-posed’’, i.e., the
tions. Antos et al. also reported in a later paper [6] error in the results (the isotherm parameters) is
that using the same algorithm the numerical de- extremely large even when the error in the input (the
termination of the isotherm of methyl deoxycholate chromatogram) is very small. This question of ill
at various mobile phase compositions in a normal- posedness in chromatographic systems has been
phase system from isocratic elution profiles. The studied by James and co-workers [4,43].
dependence of the isotherm parameters on the mobile Our approach here is aimed at an even more
phase composition was described by a three-parame- fundamental question: if we have a full understand-
ter equation derived from the Snyder model [40]. ing of the appropriate model, and identifiability is
The results were used to simulate overload gradient guaranteed, how does error in the experimental data
elution profiles. The predicted peak shapes are not in translate into error in the resulting isotherm parame-
complete agreement with the experimental peak ters? In other words, given a bound on the typical
shapes. This is acceptable for single component runs, error associated with any point in the experimental
but for multicomponent runs, it may affect prod- chromatogram, can suitable bounds be found on the
uctivity or yield calculations appreciably. estimated parameters? This is an essential question in

any parameter estimation or inverse problem. Here,
we present an argument to bound the error in the

2.2. Statement of problem parameters, and thereby establish a relationship
between the experimental error and the number of

Many questions remain regarding the numerical experimental replicates needed to obtain isotherm
estimation of isotherms. In analytical chromatog- parameters with a specified standard error.
raphy, the feed concentrations are so low that the
various mass-transfer and diffusion parameters (such 2.3. Methodology
as the film mass-transfer coefficient, the pore dif-
fusivity, the axial dispersion coefficient) are all We use data simulated by a numerical code, called
independent of feed concentration. And, by defini- the solver, to represent the experimental chromato-
tion, the large number of binding sites relative to the gram in order to ensure that the only source of error
number of adsorbing molecules implies that the is in the chromatogram; the isotherm model and the
equilibrium binding constants are independent of the exact values of its parameters must therefore be
rate constants. Neither of these convenient assump- known exactly. Since the latter assumption is never
tions holds in nonlinear chromatography. At high possible when using real data (even if a given
feed concentrations, rate parameters can depend on isotherm model fits real data well, there will always
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be some error involved), simulated chromatograms perimental chromatogram. The error between these
are the appropriate test bed for the present study. The chromatograms is minimized by the optimizer, and
rate parameters are also fixed, and the same numeri- the corresponding isotherm parameter values are the
cal code that is used to generate the data is used in best-fit values. The expression to be minimized is
the estimation problem. Thus, error only arises from given explicitly in Section 3.
the chromatogram; we represent experimental error A variety of multicomponent isotherms has been
here by incorporating Gaussian noise. At each time, used to capture chromatographic retention behavior
the exact chromatogram simulated by the solver is [2,44,45]. Here, we restrict attention to the simplest
perturbed by adding a random number representing a of these, the multicomponent Langmuirian isotherm:
certain relative error to produce an experimental

a ci ichromatogram. We define relative error at a point in ]]]q 5 , i 5 1, 2, 3, . . . , p (1)pi
the chromatogram as the ratio of the error to the 1 1Ob cj jconcentration at that point. The best-fit isotherm j51

parameters are then generated iteratively using an
where p is the total number of adsorbable com-optimizer that calls the solver repeatedly with chang-
ponents in the system. Each feed component contri-ing isotherm parameter values as depicted schemati-
butes two parameters: a is the slope of the isothermcally in Fig. 1. For a given set of isotherm parameter
at the origin, and therefore represents the distributionvalues, the solver generates a simulated chromato-
coefficient at analytical concentrations (or Henry’s-gram, which the optimizer compares with the ex-
law constant); b is a measure of its affinity for the
stationary phase; the ratio a /b is the corresponding
saturation concentration. Although the Langmuirian
isotherm is known to be thermodynamically incon-
sistent unless the saturation concentrations of all the
species are identical [46,47], there are many situa-
tions in which it is a useful empirical description of
realistic multicomponent adsorption. We use it here
because it is a simple, explicit formalism, and allows
us to concentrate on the question of estimation error.
Ternary feeds are used in this work; consequently,
six isotherm parameters must be obtained.

2.4. Statistical analysis

We first introduce some convenient notation. The
chromatogram generated by the solver for the exact
isotherm parameters is called the exact chromato-
gram. The variants generated by incorporating ran-
dom errors into the exact chromatogram are called
replicates, to distinguish them from real experimental
runs, which will simply be called experiments. We
will generate a large number of replicates for a given
exact chromatogram, in order to be sure that a
statistically representative distribution of the parame-
ters is obtained. Later, we will see that a Monte
Carlo distribution is found to be necessary for this
purpose.Fig. 1. Flowchart describing the process of estimating isotherm

parameters numerically. We have found that the variation in any estimated
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parameter is well approximated by a Gaussian a , . . . , a , where n is the number of replicate12 1n

distribution. A representative result for two parame- runs; similar notation applies for the other parame-
ters from different exact data sets is shown in Fig. 2 ters. We scale the six average parameters before

]
(the corresponding isotherm parameter values and combining them into the parameter vector X; thus its

] ]feed conditions are listed in Tables 1 and 2, respec- first component, X , is (a 2 a ) /a where1 1 1,exact 1,exact
]tively). However, correlation among the parameters a is the exact value of a and a is the averaged1,exact 1 1

must also be accounted for, and this is done in this value of a , a , . . . , a ; the second component,11 12 1n] ]section. The individual estimates for a are a , X , is (b 2 b ) /b ; and the sixth com-1 11 2 1 1,exact 1,exact
] ]

ponent, X , is (b 2 b ) /b . This has the6 3 3,exact 3,exact

advantage of making the average value of each
component unity. The error in the parameters ob-
tained from the optimization process can be repre-
sented through the residual sum of squares (RSS),
defined as:

] ] ]2 2 2 1 / 2RSS 5 X 1 X 1 . . . 1 Xfs d s d s d g1 2 6

Since the standardized isotherm parameters were
found to be Gaussian, we have:

a 2 a1,i 1,exact 2]]]]X 5 | N 0,ss d1 1a1,exact

where the N on the right-hand side represents a
normal or Gaussian distribution with a mean of 0 and
a standard deviation of s ; similar results hold for all1

the other parameters. Then the averaged parameters
satisfy:

2
s s] 1 1S D] ]X | N 0, 5 ? N 0,1s d]1 Œn n

Similar results can readily be written for the other
]]Œparameters. Taking the square of ( n /s ) ?X gives1 1

2a x distribution with 1 degree of freedom [48]:

n ] 2 2]? X | xs d2 1 1
s 1

If the isotherm parameters were uncorrelated (i.e.,
they were independent of each other), then the RSS

2would be a weighted x distribution with 6 degrees
of freedom:

2 2 2 1 / 2
s s s1 2 61 2 2F G] ] ]RSS 5 x 1 x 1 . . . 1 x1 1n n n

1 2 2 2 2 2 2 1 / 2]5 ? s x 1 s x 1 . . . 1 s xf g] 1 1 2 1 6 1ŒFig. 2. Probability plot for estimated isotherm parameters. Part n
(a), estimated parameter a from the exact data II with 10%3

Note that the term in square brackets is indepen-relative error (70 replicates). Part (b), estimated parameter b from1

the exact data I with 5% relative error (30 replicates). dent of n. However, since the isotherm parameters
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Table 1
Isotherm parameter set

Set 1 Set 2

Parameter Exact value Range Parameter Exact value Range

a (–) 3.00 2.4–3.6 a (–) 2.50 2.25–2.751 1
23 24b (ml /mg) 0.100 10 –10 b (ml /mg) 0.0714 10 –11 1

a (–) 4.50 3.6–5.4 a (–) 3.00 2.7–3.32 2
23 24b (ml /mg) 0.113 10 –10 b (ml /mg) 0.075 10 –12 2

a (–) 6.75 5.4–8.1 a (–) 3.50 3.15–3.853 3
23 24b (ml /mg) 0.135 10 –10 b (ml /mg) 0.078 10 –13 3

are correlated in an overloaded run, we must replace will therefore need to use simulations to determine
the RSS distribution numerically.the previous expression by:

Nevertheless, Eq. (3) is invaluable in pointing out]1 1 / 22 2]RSS 5 x (2) that the variance of x is independent of the numberf g] 6 6Œn
of replicates, n. Since this is also true of the mean of

2where the overbar on the chi-squared term indicates x , as pointed out above, we conclude that the mean6 ]2that the correlated structure of the parameters has and variance of x also do not depend on n. It6
been incorporated. therefore follows from Eq. (2) that the RSS will

It is interesting to note that the mean and variance decrease as the square root of the number of
of RSS-squared can be calculated explicitly. The replicates. We can determine how many replicates
mean of RSS-squared is 6, which is exactly the mean will be needed to make the RSS sufficiently small.
of a chi-squared distribution with 6 degrees of Usually, requiring the RSS to be 0.05 should be

2freedom, x . The variance of RSS-squared is given6 sufficient for most subsequent applications of the
by: isotherm parameters, and this value has been used in

6 6 all the calculations below. It can easily be seen from
2 2

s 5 12 1 2OOr (3) the definition of RSS that this choice (RSS50.05)RSS-squared i, j
i51j51 guarantees that no estimated parameter is worse than

5% away from its exact value. Of course, RSS is alsoThe first term on the right-hand-side of Eq. (3) is
a random variable, with its own variance. So we willthe variance of a chi-squared distribution with 6
use the 95th quantile to be reasonably sure (withdegrees of freedom. The second term involves the
95% confidence) that the calculated average value ofsum of the correlatedness between the isotherm
RSS in a given optimization run lies below 0.05.parameters taken pairwise, and is always positive.

An important consequence of obtaining a sum ofTherefore the correlatedness of the parameters al-
2(correlated) x distributions is that the variance inways leads to an increase in the variance of RSS-

RSS will be comparable to the mean. This impliessquared. However, the mean and variance of RSS
that, in some cases, a large number of replicates may(which is what we are interested in) cannot be
be needed in order to determine the isotherm param-explicitly calculated from those of RSS-squared. We

Table 2
Numerically simulated experimental data set

Exact data Number of theoretical plates Loading Isotherm parameter set Number of data points

I 1000 c 52 mg/ml, V 50.3V Set 1 179feed feed 0

II 1000 c 52 mg/ml, V 50.6V Set 1 199feed feed 0

III 1000 c 55 mg/ml, V 50.4V Set 2 84feed feed 0

IV 1000 c 52 mg/ml, V 50.6V Set 1 24feed feed 0

V 1000 c 52 mg/ml, V 5V Set 1 27feed feed 0

VI 2500 c 52 mg/ml, V 50.6V Set 1 188feed feed 0
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eters to reasonable accuracy. We will see later that sary. This increases the overall error associated with
this is in fact the case (cf. Tables 10–12). the reconstructed chromatogram. We expect that 5%

relative error is fairly good for small molecules;
proteins and other macromolecules often produce
greater errors, and 10% might then be reasonable.3. Simulations
The error is added into the exact chromatogram by
using the random-number-generator FORTRAN codeSeveral simulation methods have been used in our
DRNOR, obtained from Netlib. This code generatesgroup for preparative chromatography [49,50]. Typi-
normally distributed random iterates with mean 0cally, the lumped solid-phase mass-transfer model is
and variance 1; these are scaled to produce 5%used, which can be represented as:
relative error and added pointwise to the chromato-

≠c ≠c ≠qi i i gram to simulate experimental error. This is then] ] ]1 u 1 f 5 0 (4)
≠t ≠z ≠t used as the ‘‘experimental’’ chromatogram in the

optimizer to find the best-fit isotherm parameters.≠qi
] *5 k q 2 q (5)s d In order to scale the iterates, we must decide whatM,i i i≠t

fraction of the normal distribution lies within 5%
Here, t and z are the independent variables time and relative error (since, with a Gaussian, there will
distance into the column; the dependent variables are always be some fraction of the values that lie outside
the mobile phase concentration c and the stationary of any specified bound). Here, we choose to specify
phase concentration q for each adsorbable compound that 90% of the iterates must lie within the spe-
i. The mobile phase velocity is u, the volumetric cifications; thus, 10% of the distribution is allowed
phase ratio (the ratio of stationary phase to mobile to lie outside of the 65% limits. This choice was
phase volume) is f, and the mass-transfer coefficient made in order to allow substantial likelihood for
for the ith component is k . Note that q is not ini errant points (outliers). This implies that the estimate
equilibrium with c, but simply represents the station- for the number of experiments obtained ultimately
ary phase concentration. The stationary phase con- will be close to an upper bound; in other words, in

*centration in equilibrium with c is q , which is most cases, fewer experiments may suffice. We
described through the multicomponent adsorption therefore obtain a ‘‘worst-case’’ estimate with this
isotherm: choice.

The results from any run of the solver during the*q 5 f c , c , . . . , c (6)s di i 1 2 p
estimation process (as shown in Fig. 1) are then
compared against the experimental chromatogram,where p adsorbable components are present in the
and an estimate of how well the simulation fits thecolumn. This represents the solver. As mentioned
experimental data is constructed. Here, an outputearlier, only Langmuirian isotherms for ternary feeds
least-squares method [51] is used; thus the objective( p53) will be used here. Both Craig plate models
function is the sum of the squares of the differencesand rate models based on the method of characteris-
between the experimental and simulated concentra-tics are used to solve the lumped equations above. It
tion values at various instants. For example, for awas found for these data sets that the Craig plate
single-component run where the isotherm is to besimulations were significantly faster than the rate
fitted to the Langmuir isotherm, the objective func-model; since the optimization process involves many
tion J would be given by:calls to the solver, the Craig process was preferred,

and was used for all the results shown here.
M

In this paper, 5 and 10% relative error are widely 2J(c;a,b) 5O c L,t ;a,b 2 c (L,t ) (7)s df gsim m exp mused. These values are reasonable for many over- m51

loaded runs, for which direct detection by, e.g., a UV
detector is usually impossible because the high feed where M is the total number of data points at which
concentrations saturate the detector. Thus sample the effluent history is known, c represents thesim

collection, dilution, and separate analysis are neces- result of the simulation at the column exit (at z5L)
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at those discrete times (t5t ) for which experimen- lem are solved to generate directions of search.m

tal data is available. The isotherm parameters a and b Along these directions, better approximations to the
are listed after the semicolon to emphasize that the solution are determined.
simulated concentration depends on these parame- In the Langmuirian isotherm, the a parameters are
ters. The code that evaluates the objective function proportional to the linear (Henry’s law) distribution
for given values of a and b, and on this basis chooses coefficients, and can therefore be well estimated
new values of a and b, is called the optimizer. The from separate analytical runs. The b parameters,
problem of estimating the ‘‘best’’ isotherm parame- which relate to the saturation concentration or equi-
ters, i.e., those that fit the experimental data best in valently the isotherm curvature, cannot be deter-
the sense of minimizing the objective function J, is mined easily from independent experiments. In fact,
carried out iteratively. We start with a guess for a it is the difficulty of determining these nonlinear
and b. The optimizer feeds these values to the solver, parameters experimentally that leads us to try nu-
and thus obtains the chromatogram corresponding to merical estimation in the first place! The two sets of
these values. It then evaluates J, and thus decides on isotherm parameters used in this study are listed in
a new pair a, b. The process is repeated until the fit Table 1. Our boundaries on the a parameters are
is acceptably good, i.e., the error lies below a fairly tight, at 620% of the exact values for parame-
specified tolerance. This description used a single- ter set 1 and 610% for parameter set 2. The bounds
component isotherm for simplicity; as mentioned on the b parameters are much wider, to minimize the
earlier, all the runs reported in this work are for loss of b’s appropriate to the data but excluded
ternary feeds. Such an iterative method is computa- because of unduly narrow bounds. (If we had found
tionally convenient, allows for incorporation of some optimization runs failing with values of b’s
regularization terms if the problem turns out to be close to or at a boundary value, we would have
sufficiently ill-posed to warrant it [52], and can be enlarged these bounds suitably. This was not a factor
used for almost any kind of chromatogram. Methods in our runs, and so we are fairly confident that our
that try to invert the problem directly (i.e., working bounds were appropriate.)
directly from the chromatogram and attempting to In order to ensure that we reached the global
calculate the resulting isotherm parameters) are often minimum, for each experimental chromatogram we
more ill-posed, and are always limited by the nature ran six widely different sets of initial guesses. In all
of the chromatogram. Thus, a completely resolved cases, all six initial guesses converged to a numeri-
chromatogram cannot be used in the direct method to cally unique solution. (Slight differences in the final
obtain isotherm parameters that depend solely on results are sometimes obtained; however, the differ-
interaction among the feeds. However, an iterative ences are less than 1%, and we concluded that these
method simulates the entire chromatographic pro- represent the same minimum perturbed by the differ-
cess, and therefore captures competition among the ent error in the chromatograms.) It is concluded that
feeds as they pass down the column subsequent to for this given bound on the parameters, convergence
feed introduction. Such an iterative method is likely is guaranteed regardless the initial guesses.
to capture pure interaction parameters even when
given a chromatogram that is completely resolved.

There are many effective optimization methods 4. Results and discussion
available. We use here a public-domain code written
by Professor Tits’ group at the University of Mary- The first set of exact data used was produced by
land [53]. This state-of-the-art FORTRAN code running the solver for the isotherm parameter set 1
solves nonlinear optimization problems with non- and for a feed volume of V 50.3V . All otherfeed 0

linear and linear equality and inequality constraints, conditions are listed in Table 2. The exact isotherm
and simple bounds on the variables. The code is parameter values are: a 53.00; b 50.100 ml /mg;1 1

based on sequential quadratic programming (SQP) a 54.50; b 50.113 ml /mg; a 56.75; b 50.1352 2 3 3

iterations [54,55], in which a sequence of quadratic ml /mg. These could be viewed as representative of
sub-problems near the solution of the original prob- moderately retained feeds (perhaps amino acids or
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Table 3small peptides) on a reversed-phase or hydrophobic
Number of experiments required for exact data I with 5% relativeinteraction column under isocratic elution.
error

Both the chromatogram in the absence of error,
Size of Monte Number of replicatesand a representative one for 5% error, are shown in
Carlo matrixFig. 3a. The feed volume corresponds to bands that 10 20 30

are just resolved at the column outlet. The number of 1000 0.82 0.77 0.61
theoretical plate is 1000, as listed in Table 2. We will 10 000 0.83 0.76 0.64

50 000 0.83 0.76 0.63see shortly that larger plate counts do not make much
difference in these runs.

Since the estimation process is numerically inten-
sive (recall that each simulated chromatogram was having this covariance is then generated by Monte
run for six initial guesses), we run a fair number of Carlo simulations. The RSS distribution is then
replicates (e.g., 30 or 40), and then try to extract the generated, and Eq. (2) is used to determine the
covariance matrix from these replicates using stan- number of experiments needed to obtain isotherm
dard methods. A very large sample of replicates parameters to a certain level of accuracy (here, the

95th quantile is used). The examples below will
clarify exactly how the process is carried out. The
package S-PLUS is used for statistical calculations
[56]. Table 3 shows the number of experiments
needed to two significant digits (in practice, we will
round this to the nearest integer) as a function of the
number of replicates and the size of the Monte Carlo
simulation for the results in Fig. 3a. In this case, we
did not go further because the number of experi-
ments needed is clearly going to be less than 1,
implying that one experiment would be sufficient to
identify the isotherm parameters in this case. Of
course, in practice, we would always do at least two
experiments.

Table 4 shows the corresponding results for the
case where the relative error in the chromatogram
was increased to 10% (the feed volume remains at
V 50.3V ). A representative chromatogram isfeed 0

shown in Fig. 3b. For 10 replicates (the first column
of the matrix), it can be seen that the number of
required experiments varies somewhat as the size of
the Monte Carlo sample increases. This variation
decreases as the number of replicates increases, as

Table 4
Number of experiments required for exact data I with 10% relative
error

Fig. 3. Simulated chromatogram for exact data I (V 50.3V ).feed 0 Size of Monte Number of replicates
Part (a) compares the exact case, i.e., no error added (symbols)

Carlo matrix
with a representative run involving 5% relative error (solid line). 10 20 30 40
Part (b) compares the ‘‘exact’’ or ‘‘no error’’ case (same symbols

1000 2.8 2.3 2.1 2.1
as in part a) with a representative run involving 10% relative error

10 000 2.6 2.3 2.1 2.1
(solid line). In all cases, concentrations are reported approximately

50 000 2.6 2.3 2.1 2.1
every second.
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can be seen from the second and third columns of the
matrix. Thus the numerical process involves running
as many replicates and choosing as large a Monte
Carlo sample as necessary to achieve numerical
convergence. It is clear from Table 4 that 30
replicates of the numerical estimation process (corre-
sponding to 30 versions of the exact chromatogram
to which error is added randomly as described
above) are needed to obtain two-digit accuracy in the
result. On this basis, we conclude that two experi-
ments should be done (a safe estimate would be three
experiments). For each of these runs, the estimation
process should be carried out to arrive at an estimate
of the isotherm parameters. Taking the mean values
of these parameters gives us the final result; the
theory presented above indicates that the RSS associ-
ated with these mean isotherm parameters is below
0.05, with 95% confidence.

Next, a simulation (exact data II in Table 2) using
a larger feed volume (V 50.6V ) is used to gener-feed 0

ate the experimental chromatogram (see Fig. 4). Now
the bands are mixed on emerging from the column.
Since mixed bands represent greater interaction
among the feed components, it is interesting to
compare the results of this case to the previous one.
It should be remembered, however, that the entire
chromatographic process is being simulated in the Fig. 4. Simulated chromatogram for exact data II (V 50.6V ).feed 0

solver. Thus, even if the bands are resolved at the Part (a) compares the exact case (symbols) with a representative
run involving 5% relative error (solid line). Part (b) compares thecolumn outlet (as in Fig. 3), the components were
exact case (same symbols as in part a) with a representative runmixed over a considerable portion of the column,
involving 10% relative error (solid line). All other information asand interacted with each other over that length. Thus,
in Fig. 3.

feed–feed interactions may well be adequately de-
scribed in this numerical approach even when the
bands are resolved at the outlet. In this sense, this found than that in the previous runs; now 70
method is more general than methods based simply replicates are needed to provide convergence to two
on the effluent chromatogram (such as all experimen- significant digits. Notice that the number of experi-
tal methods). Again, we first generate 5% relative ments needed has gone up significantly relative to
error using random iterates (a typical chromatogram that in Table 5. The RSS as a function of the number
is shown in Fig. 4a), and calculate the corresponding of experiments needed, n, is shown in Fig. 5.
best-fit parameters. The results are shown in Table 5;

Table 5
now 40 replicates are needed for convergence to the Number of experiments required for exact data II with 5% relative
RSS distribution, and we find two experiments error
should suffice to obtain isotherm parameters for

Size of Monte Number of replicates
which RSS50.05 with 95% confidence. Carlo matrix

10 20 30 40Table 6 shows the corresponding case where the
1000 2.5 1.8 1.9 1.9relative error is increased to 10% as the feed volume

10 000 2.5 1.7 1.8 1.8remains at V 50.6V . A typical chromatogram isfeed 0
50 000 2.5 1.7 1.8 1.8found in Fig. 4b. Considerably more variation is
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Table 6 Table 7
Number of experiments required for exact data II with 10% Number of experiments required for combination of exact data I
relative error and II both with 5% relative error

Size of Monte Number of replicates Size of Monte Number of replicates
Carlo matrix Carlo matrix

10 20 30 40 50 60 70 10 20 30

1000 11 7.2 7.3 7.2 6.3 6.3 6.4 1000 0.58 0.41 0.36
10 000 10 6.7 7.1 7.4 6.4 6.3 6.3 25 000 0.53 0.42 0.38
50 000 11 6.8 7.1 7.4 6.4 6.3 6.3 50 000 0.53 0.42 0.38

Consideration of the results in Tables 3–6 indi- would be essential to identify the parameters con-
cates that the chromatogram representing complete tained in these interaction terms. Isotherms with such
separation (Fig. 3) needed fewer experiments for the interaction terms have been proposed in the literature
same level of error than did the chromatogram with [18,33–35].
overlap (Fig. 4). This is an interesting and somewhat We now examine the possibility of using both
unexpected result. This may be because of the datasets above simultaneously in the optimizer, i.e.,
iterative nature of the optimization method used will fitting both small and large feed volume chro-
here. As mentioned earlier if the bands are fully matograms at the same time provides better isotherm
separated at the column outlet, the solver simulates information? The results for 5% relative error in both
the entire chromatographic process, including the datasets are shown in Table 7, and for 10% error in
period at the beginning of the column over which the Table 8. The results seem better than those for either
bands underwent strong mutual interference. So even the small or large feeds individually, since the
fully separated bands may be efficiently estimated by number of experiments needed is smaller. But it
this method. should be kept in mind that a ‘‘single’’ experiment in

If another isotherm formalism were used that Tables 7 and 8 corresponds to doing one small-feed
contained interaction terms, i.e., terms that vanished and one large-feed run. Thus, for 10% error, using
when only one component was present, then it is the small-feed run alone requires two runs, from
clear that mixed data of the kind shown in Fig. 4 Table 4; using the large run alone requires six (or

seven) runs, from Table 6; using them both together
requires two runs of each kind. However, this kind of
combined run is often useful in that it is likely to be
not much worse than the best case, and much better
than the worst case. Since we do not know
beforehand (for an arbitrary isotherm) which case is
the best, the combined run may be quite attractive in
practice.

As another way of examining the variation in the
parameters, the individual results of the various

Table 8
Number of experiments required for combination of exact data I
and II both with 10% relative error

Size of Monte Number of replicates
Carlo matrix

10 20 30 40 50

1000 2.1 1.8 1.7 1.5 1.6
25 000 2.3 1.8 1.6 1.5 1.5

Fig. 5. RSS as a function of n, the number of experiments needed
50 000 2.3 1.8 1.6 1.5 1.5

for results listed in Table 3 (solid line) and Table 4 (dashed line).
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replicates for the calculations above are shown in
Fig. 6. It is clear that the relative variation in the a
parameters is far less than in the b parameters. This
is to be expected in part because of the much tighter
bounds on the former.

The runs above were based on simulated chro-
matograms for a ternary system with moderate
selectivity (around 1.5 for each adjacent pair of
components). While this is realistic for preparative

Fig. 7. Simulated chromatogram for exact data III (V 50.4V ).feed 0

Different isotherm parameters from those used in the earlier
figures; this figure represents a more difficult separation.

runs, it is of interest to see how the results would
change if the selectivity were decreased. Fig. 7 is the
exact chromatogram (exact data III in Table 2) for a
ternary system in which the binary selectivities are
1.1, with V 50.4V . The exact isotherm parameterfeed 0

values are listed in Table 1. Considerably more
mixing is found than that in the earlier runs with
comparable feed volumes for the system with higher
selectivity (cf. Figs. 3 and 4). When 5% relative error
was added in the usual way, the results for up to 60
replicates are shown in Table 9. Now seven experi-
ments are needed, compared to one (Table 3) or two
(Table 5). When 10% relative error is used, the
number of experiments needed increases to 36
(Table 10). This is an indication that highly over-
loaded systems may have too much mixing among
the feed bands to obtain the isotherm parameters
effectively. Although this is a single result, we might
cautiously suggest that there is a range of loading for
which experimental estimation is facilitated, and that

Table 9
Number of experiments required for exact data III with 5%
relative error

Size of Monte Number of replicates
Carlo matrix

20 30 40 50 60

1000 5.7 6.0 6.7 6.5 6.4
Fig. 6. Variations in simulated parameters (scaled with respect to

10 000 5.9 5.7 6.6 6.2 6.3
the exact parameters) and RSS. Part (a), exact data II with 10%

50 000 5.8 5.8 6.6 6.5 6.2
relative (70 replicates). Part (b), combination of two exact data I

100 000 5.8 5.8 6.6 6.5 6.2
and II both with 5% relative error (30 replicates).
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Table 10 Table 11
Number of experiments required for exact data III with 10% Number of experiments required for exact data IV with 5%
relative error relative error and less data points than that of Table 5

Size of Monte Number of replicates Size of Monte Number of replicates
Carlo matrix Carlo matrix

20 30 40 50 60 10 20 30 40

1000 51 38 41 32 36 1000 8.2 12 11 12
10 000 46 39 39 36 35 10 000 8.9 12 11 11
50 000 47 38 39 36 36 50 000 8.8 12 11 11

100 000 51 40 40 36 36

required has increased significantly, to 11. This
very low or very high loading complicates the indicates that the large number of points in the
estimation process. earlier runs (exact numbers are listed in Table 2) are

Another factor that may affect the results is the in fact useful in minimizing the variance of the
number of data points in the experimental chromato- converged result.
gram. In the earlier runs (Figs. 3 and 4), data points One way to increase the number of data points
were generated approximately every second. While when collecting fractions is to increase the loading;
this is realistic for detectors in current use (in fact, for isocratic elution, this should result in a wider
typical detectors collect several points per second), band. The feed volume was increased to V 5V infeed 0

in many cases the feed concentrations in preparative Fig. 9 (exact data V in Table 2), and the corre-
runs are high enough to saturate the detector. Then sponding results shown in Table 12. It can be seen
fractions must be collected, diluted if necessary, and that the number of experimental data points did not
re-analyzed in order to reconstruct the preparative
chromatogram. In this case, the number of points in
the chromatogram will be dramatically reduced. Fig.
8 (exact data IV in Table 2) shows the same
chromatogram as in Fig. 4 (for V 50.6V ), butfeed 0

with data points being generated every 10 s. The
usual process of estimating the parameters was done,
and the result for 5% relative error is shown in Table
11. It can be seen that the number of experiments

Fig. 9. Simulated chromatogram for exact data V (V 5V ) withfeed 0

24 nonzero points.

Table 12
Number of experiments required for exact data V with 5% relative
error

Size of Monte Number of replicates
Carlo matrix

10 20 30

1000 7.9 9.3 10
Fig. 8. Simulated chromatogram for exact data IV (V 50.6V ).feed 0 10 000 8.5 10 10
The same exact case as in Fig. 4, but here the concentrations are

50 000 8.8 10 10
reported approximately every 10 s (21 nonzero points).
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Table 13
Number of experiments required for exact data VI with 5%
relative error

Size of Monte Number of replicates
Carlo matrix

10 20 30

1000 1.7 1.4 1.4
10 000 1.6 1.4 1.4
50 000 1.6 1.4 1.4

increase appreciably in Fig. 9, and the required
number of experiments went to 10, which is a very
small change from 11. Notice that the pure portion of

Fig. 10. Simulated chromatograms for exact data II and VIthe middle component is already quite narrow in Fig.
(V 50.6V ). Solid line for exact dataset VI (2500 plates) andfeed 08, and does not exist in Fig. 9. Increasing the loading
symbols for exact data II (1000 plates).much further would in effect produce a case analo-

gous to that of Fig. 7, where the bands are highly
mixed; the number of experiments required would plateau portion of the second and third band. The
therefore increase again. The issue of increasing the effect on the estimation process is also small: the
number of experimental data points by using an number of experiments needed decreased by 1 for
appropriate combination of sampling (fraction col- 10% error, and remained the same for 5% error.
lection) and detection is therefore one of great Increasing the column efficiency further would make
practical importance. even less difference to the exact chromatogram, and

The effect of column efficiency on parameter it is likely that the number of experiments will be
estimation was investigated by repeating the runs similarly insensitive.
above with higher plate counts. An exact data with Finally, we compare the distributions generated by
2500 plates was made (exact data VI in Table 2) with the relatively small number of replicates and those
all other conditions the same as exact data II. Table produced by the large Monte Carlo simulations. Fig.
13 shows the number of experiments needed for this 11 shows the histogram from the replicates and the
data set with 5% relative error. Convergence is density distribution generated by the Monte Carlo
achieved by 30 replicates, and two experiments simulations for the case described in Table 6. It is
should suffice. The results corresponding to 10% clear that the original replicates would have provided
relative error are shown in Table 14, where six a poor estimate of the 95th quantile, from which we
experiments are seen to be necessary. Comparing the calculate the number of experiments required to
chromatogram due to 2500 plates to that due to 1000 obtain 5% precision in the final isotherm parameters.
plates (Fig. 10), a very slight increase in resolution is The density distribution is seen to be asymmetric,
seen, due to the sharper peaks at N52500. Slight with a significant tail. It should be noted that the
differences can also be observed at the top and number of experiments calculated from the Monte

Carlo estimate of the 95th quantile is itself a variable
with some error. The process of generating Monte

Table 14
Carlo distributions is therefore repeated several timesNumber of experiments required for exact data VI with 10%
(typically 20) for the bottom right entry in each ofrelative error
the tables, in order to determine a standard deviation

Size of Monte Number of replicates
for the reported number of experiments. In all casesCarlo matrix

10 20 30 we have studied, these relative standard deviations
1000 6.5 5.7 5.7 are less than 1% of the mean, which indicates that

10 000 6.7 5.2 5.5 the results of the tables can be regarded with
50 000 6.6 5.5 5.5 confidence.
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extremely low probability, since the corresponding
Monte Carlo simulation with 50 000 replicates does
not have a significant density value in this range.

The work presented here could be expanded in
several ways. Firstly, other perturbations on the
experimental data could be considered. For example,
slight changes in flow-rate or mobile phase com-
position or gradient timing and slope would result in
changes in the times at which the bands emerged
from the column. Since we have so far only consid-
ered perturbations in the effluent concentrations, but
kept the times at which they emerge fixed to their
exact values, this would provide an additional source
of data regarding error propagation in the estimation
of isotherms. Secondly, and more importantly, this
work must be tested on real experimental data, for

Fig. 11. Plot of the histogram obtained from the 70 replicates which the ‘‘exact’’ isotherm model is unknown; then
used in Table 6 (exact data II with 10% relative error), and the

the combined effect of model error and experimentalcorresponding density of the Monte Carlo distribution with the
error on the required number of experiments must besame covariance with 50 000 replicates (solid line).
assessed. While this is a vital problem, it can only be
studied once the role of each kind of error has been

Fig. 12 shows the same comparison of the histo- estimated. The current work provides an explicit
gram from the replicates with the density generated basis for quantifying the effect of experimental error
from the Monte Carlo simulations for the case on isotherm parameter estimation.
described in Table 7. Again, a tailing density dis-
tribution is found. The single entry in the histogram
with an RSS between 0.07 and 0.08 is an event of 5. Conclusions

Numerical estimation of isotherm parameters is
rapidly becoming an attractive and viable method for
determining multicomponent adsorption data. In this
paper, the influence of experimental error on the
variance of the resulting parameters is addressed
quantitatively. It is shown that the variation in the
RSS, which is a measure of the goodness of fit,
varies inversely as the square root of the number of
replicates. From this result, we have shown how
many experiments of a certain kind will be needed to
identify parameters in a ternary mixture to 5%
accuracy. Using experimental data of different kinds
is discussed; in many practical separations, this may
be a simple way to explore a larger fraction of the
parameter space effectively. An attractive feature of
the numerical approach used here is its effectiveness

Fig. 12. Plot of the histogram obtained from the 30 replicates even when the effluent chromatogram consists of
used in Table 7 (combination of exact data I and II both with 5%

fully resolved peaks. The extent of loading, res-relative error), and the corresponding density of the Monte Carlo
olution and the number of data points in the ex-distribution with the same covariance with 50 000 replicates (solid

line). perimental chromatogram are shown to be significant
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